

Как правильно подобрать крепеж для монтажа и усиления стропильной системы?

Каркасом стропильной системы и основанием любой крыши является мауэрлат. В деревянных домах его функции может выполнять верхний венец сруба, а на кирпичных и бетонных стенах монтируется мощное основание из бруса.

Крепление мауэрлата.

- 1. В домах, сложенных из клееного бруса или из бревен, мауэрлат не требуется. Если высоты несущих стен недостаточно, укладывается дополнительный венец-мауэрлат. Для его крепления используются кованные скобы и стальные нагели (шипы).
- 2. Крепление мауэрлата на кирпичных стенах возможно несколькими способами:
- в процессе кладки несущих стен на глубину 3-х и более верхних рядов кирпичей замуровываются шпильки диаметром не менее 14 мм. Нижний конец шпильки должен быть согнут под прямым углом в виде буквы "Г". Длина свободной части шпильки должна быть больше толщины мауэрлата на 3-4 см;
- на заключительном этапе кладки несущих стен заливается армированный пояс. В него вмуровываются "Г"образные шпильки или анкерные болты диаметром не менее 14 мм. Длина открытой части крепежных элементов должна на 3-4 см превосходить толщину мауэрлата.

Расстояние между шпильками (анкерными болтами) выбирается кратным шагу стропил и равно 1,0... 1,5 м.

Перед монтажом мауэрлата на каменные стены обязательно укладывается слой гидроизолирующего материала.

Крепление стропил.

1. Дома, сложенные из бревен или бруса, в процессе эксплуатации дают усадку, а их геометрические параметры изменяются. В таких условиях крыша должна иметь некоторую независимость. При жестком креплении стропильной системы крышу деревянного дома перекашивает, а кровельные материалы разрушаются. В худшем случае это может привести к разрушению каркаса дома, поэтому соединения стропил делают подвижным.

Стропила в коньке могут крепиться двумя способами:

- подвижное соединение с помощью болта М16;
- соединение с помощью пластинчатого шарнира. В этом случае на каждом стропиле 4-мя болтами М10...М12 крепятся по две стальных накладки. Роль шарнира выполняет болт М16.

Крепление стропил к мауэрлату осуществляется с помощью так называемых "салазок". Скоба и кронштейн крепятся гвоздями, при этом стропило имеет возможность небольшого перемещения относительно мауэрлата вдоль своей продольной оси.

- **2.** Если дом сложен из кирпича или шлакоблока, применяется жесткое крепление стропил. В этом случае коньковое соединение выполняется следующими способами:
 - неподвижное соединение встык. При этом стропила скрепляются гвоздями, а весь узел усиливается дополнительной стальной или деревянной накладкой ригелем. Ригель к стропилам крепится болтами M10...M12 или гвоздями соответственно;
 - неподвижное соединение врезкой в полдерева. В этом случае стропила соединяются болтом М16, а узел усиливается ригелем.

Крепление стропил к мауэрлату осуществляется с помощью усиленных стальных уголков. Для крепления уголков используются болты M10...M12 и гвозди.

В качестве дополнительных креплений неподвижных узлов используются хомуты, стяжки из проволоки и монтажная перфорированная лента.

Все резьбовые соединения выполняются с применением металлических шайб или пластин.

При креплении деталей конструкции гвоздями необходимо придерживаться следующего правила: длина гвоздя должна в 2-3 раза превышать толщину пробиваемого элемента.

Рекомендуется использование гвоздей с кольцевой накаткой длиной 100 мм, т.к. они меньше повреждают структуру дерева, при этом прочность соединения оказывается существенно выше.

Как усилить или отремонтировать стропильные конструкции

Одной из наиболее широко распространённых проблем возникающих у тех, кто ведёт строительство дома своими руками, является несоответствие сечения пиломатериалов используемых при строительстве крыш нагрузкам, воздействующим на крыши.

В случае, когда строители перестраховались и взяли пиломатериалы большего, чем требуется, сечения, ничего страшного не произойдёт. Ну разве что стоимость крыши выйдет за пределы планируемой.

А вот в том случае, если сечения меньше требуемых, возникают проблемы - деформация и разрушение стропил и других элементов кровельной системы.

Справедливости ради следует признать, что разрушиться стропильная система может только в случаях воздействия на неё очень сильных внешних нагрузок (например, при ураганном ветре) или при полном игнорировании кровельщиками принципов выбора пиломатериалов для стропильной системы с последующим нарушением технологии производства работ.

В остальных случаях происходит прогиб элементов стропильной системы. Но прежде небольшое отступление.

Основной причиной использования пиломатериала меньшего, чем требуется сечения, является желание сэкономить денежные средства. Желание вполне нормальное. Ниже мы расскажем.

Какие меры позволят и деньги сэкономить и стропила усилить?

Как отремонтировать прогнувшиеся стропильные доски, мы писали в одной из предыдущих статей. Однако ремонт крыши можно предотвратить. Для этого как при применении наслонных, так и висячих стропил следует установить под них разгружающие балки, накладки и подкосы.

Частенько, желая сэкономить, те, кто ведёт строительство дома своими руками, устанавливают стропильные ноги переменного сечения. Вполне оправданное решение в том случае если используются кровельные материалы имеющие малый вес (например, Ондувилла). А вот при использовании более тяжёлых материалов возможен прогиб стропильных ног. Чтобы его избежать необходимо установить дополнительную деревянную балку-«подмогу».

Крепят подмогу в пролёте между мауэрлатом и подстропильной ногой при помощи хомутов или металлических пластин.

Потенциально опасным узлом в стропильной доске является точка опирания на подкос. Образно говоря, при возникновении большой нагрузки, стропила в этой точке сломаются так же, как ломается тонкая палка об колено.

Проблема решается путём закрепления двусторонних дощатых накладок. При отсутствии расчётов накладки выбираются той же ширины, что и стопила. Крепить их можно гвоздевым боем, хомутами или болтами.

https://onduline.life Дата выгрузки: 13.12.2025